Abstract

To achieve efficient dye degradation, we reported a visible light-driven biomass photo-enzyme coupled system, which was constructed by assembling g-C3N4 during in situ culture and immobilizing laccase via metal–organic framework (MOF). Benefited from the network and porous structure of bacterial cellulose (BC), the g-C3N4 could be stably interspersed, and MOF grew g-C3N4/BC to encapsulate laccase. BC improves the reusability of the system, while combined with MOF encapsulation, avoiding direct contact between photo- and enzyme- catalysts. Importantly, thanks to the existence of electron transfer from photocatalysis to enzyme, the photogenerated electron hole recombination within the photocatalyst reduced, improving catalyzed reaction efficiency. The degradation efficiency of the catalysis system within 10 min for methylene blue and rhodamine B could reach 100 % and 96.1 %, respectively, which could rapidly degrade dye and recycle for more than 10 times. This research can shine new light on the development of advanced wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.