Abstract

A wide range of organic and inorganic materials have been used in the development of nano-scale self-assembling gene delivery systems to improve the therapeutic efficacy of nucleic acid drugs. Small interfering RNA (siRNA) has recently been recognized as a promising and potent nucleic acid medicine for the treatment of incurable genetic disorders including cancer; however, siRNA-based therapeutics suffer from the same delivery problems as conventional nucleic acid drugs such as plasmid DNA and antisense oligonucleotides. Many of the delivery strategies developed for nucleic acid drugs have been applied to siRNA therapeutics, but they have not produced satisfactory in vivo gene silencing efficiencies to warrant clinical trials. This review discusses recent progress in the development of self-assembled and nanostructured delivery systems for efficient siRNA-induced gene silencing and their potential application in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.