Abstract

This paper presents a novel method for the self-assembly of aluminum nanoparticles on Si and fused silica. Due to high reactivity with oxygen, ex-vacuo annealing of thin deposited metal films, a method used extensively with other metals, does not work with aluminum. In the present experiment this problem was overcome by annealing the samples in-vacuo in the deposition chamber. Aluminum was thermally evaporated onto substrates at elevated temperatures (200–400 ° C) and annealed for 60 min without breaking the vacuum. It is shown that at 300 and 400 ° C the average particle size can be controlled by adjusting the amount of evaporated aluminum. Particle diameters ranging from 20 to 130 nm are demonstrated. These particles support localized surface plasmon resonances, a property that can be utilized for enhancing the efficiency of thin Si solar cells. This is explored here, and an increase in external quantum efficiency of up to 15% in a thin-film Si solar cell is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.