Abstract

Semiconductor heterojunction plays a pivotal role in photocatalysis. However, the construction of a heterojunction with a fine microstructure usually requires complex synthetic procedures. Herein, a pH-adjusted one-step method was employed to controllably synthesize Ag4V2O7/Ag3VO4 heterojunction with a well-tuned 0D/1D hierarchical structure for the first time. It is noteworthy that the ordered stacking of vanadium oxide tetrahedron (rm{VO}_3^-) guided by the pH value wisely realizes the in-situ growth of Ag4V2O7 nanoparticles on the surface of Ag3VO4 nanorods. Furthermore, comprehensive characterization and calculation decipher the electronic structures of Ag4V2O7 and Ag3VO4 and the formation of Z-scheme heterojunction, benefiting the visible light harvesting and carrier utilization. Such a new Ag4V2O7/Ag3VO4 heterojunction exhibits remarkable photocatalytic activity and excellent stability. Complete degradation of Rhodamine B (RhB) can be achieved in 10 min by the Ag4V2O7/Ag3VO4 heterojunction under visible light irradiation, demonstrating an outstanding reaction rate of 0.35 min−1 that is up to 84-fold higher than those of other silver vanadates. More importantly, this integration of synthesis technology and heterojunction design, based on the intrinsic crystal and electronic structures, could be inspiring for developing novel heterostructured materials with advanced performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.