Abstract
Self‐assembled γ‐Al2O3 with hierarchical structure was successfully obtained via thermolysis of γ‐boehmite (γ‐AlOOH) particles, which was hydrothermally derived from aluminum ammonium sulfate hydrate (NH4Al(SO4)2·12H2O), urea, poly‐glycol (PEG)‐2000, and deionized water. SEM observations indicate that the as‐synthesized γ‐AlOOH has hierarchical flower‐like structure, composing of needle‐like building blocks. After calcinations at 800°C, it converts to cubic γ‐Al2O3 with hierarchical structure retained by a topotactical process. N2 adsorption and desorption reveal that the obtained γ‐Al2O3 has a BET surface area of 101 m2/g with a narrow mesoporous size of about 13 nm and a broad macroporous‐size distributions of 200–500 nm, respectively. The as‐generated γ‐Al2O3 with hierarchical structure shows good capacities for removing Congo red from wastewater, indicating that 3D hierarchical structure has excellent adsorption ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.