Abstract

In this paper, an efficient implementation of the spectral domain moment technique is presented for computing the self and mutual coupling between slot antennas on a dielectric half-space. It is demonstrated that by the proper selection of the weighting functions in the method of moments, the analytic evaluation or simplification of the transverse moment integrals is enabled. This results into a significant reduction of the required computational labor. The method is then utilized in order to provide design data for the self and mutual admittances between two slot antennas on a dielectric substrate lens in the case of fused quartz (∈ r =3.80), crystal quartz (∈ r =4.53), silicon (∈ r =11.9) and GaAs (∈ r =12.8). The presented technique and associated results are useful when designing twin slot quasi-optical receivers, imaging arrays, phased arrays or power-combining arrays of slot elements at millimeter-wave frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call