Abstract

ABSTRACTThe damage produced by high current density ∿l0µA/cm2 implants of 120 keV P+ into <111> and <100> silicon wafers, 500 °m thick, has been investigated in the fluence range 1×l01 5/cm2-l×l016 /cm2 by ion channeling and by transmission electron microscopy. For both orientations the thickness of the damage layers increases with the fluence up to 2×1015 /cm2 and then decreases. The rate of regrowth is a factor two faster for the <100> with respect to the <111> oriented Si crystals. Similar ratios have been found in pre-amorphized samples and irradiated with Kr+ ions in the temperature range 350°C-430°C. The TEM analysis reveals the presence of hexagonal silicon and of twins in small amounts for both orientations. The beam induced epitaxial growth depends also on the species present in the amorphous layer. A comparison between self-annealing and beam annealing in Si <100> preamorphized with Ar+ or P+ shows a noticeable retardation of the growth rate in the presence of Ar+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.