Abstract

Carbon nanotube RF transistors are predicted to offer good performance and high linearity when operated in the ballistic transport and quantum capacitance regime; however, realization of such transistors has been very challenging. In this paper, we introduce a self-aligned fabrication method for carbon nanotube RF transistors, which incorporate a T-shaped (mushroom-shaped) aluminum gate, with oxidized aluminum as the gate dielectric. In this way, the channel length can be scaled down to 140 nm, which enables quasi-ballistic transport, and the gate dielectric is reduced to 2-3 nm aluminum oxide, leading to quasi-quantum capacitance operation. A current-gain cutoff frequency (f(t)) up to 23 GHz and a maximum oscillation frequency (f(max)) of 10 GHz are demonstrated. Furthermore, the linearity properties of nanotube transistors are characterized by using the 1 dB compression point measurement with positive power gain for the first time, to our knowledge. Our work reveals the importance and potential of separated semiconducting nanotubes for various RF applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.