Abstract

We report for the first time a CMOS-compatible silicidation technology for surround-gate vertical MOSFETs. The technology uses a double spacer comprising a polysilicon spacer for the surround gate and a nitride spacer for silicidation and is successfully integrated with a Fillet Local OXidation (FILOX) process, which thereby delivers low overlap capacitance and high-drive-current vertical devices. Silicided 80-nm vertical n-channel devices fabricated using 0.5-μm lithography are compared with nonsilicided devices. A source-drain (S/D) activation anneal of 30 s at 1100°C is shown to deliver a channel length of 80 nm, and the silicidation gives a 60% improvement in drive current in comparison with nonsilicided devices. The silicided devices exhibit a subthreshold slope (S) of 87 mV/dec and a drain-induced barrier lowering (DIBL) of 80 mV/V, compared with 86 mV/dec and 60 mV/V for nonsilicided devices. S-parameter measurements on the 80-nm vertical nMOS devices give an fT of 20 GHz, which is approximately two times higher than expected for comparable lateral MOSFETs fabricated using the same 0.5-μm lithography. Issues associated with silicidation down the pillar sidewall are investigated by reducing the activation anneal time to bring the silicided region closer to the p-n junction at the top of the pillar. In this situation, nonlinear transistor turn-on is observed in drain-on-top operation and dramatically degraded drive current in source-on-top operation. This behavior is interpreted using mixed-mode simulations, which show that a Schottky contact is formed around the perimeter of the pillar when the silicided contact penetrates too close to the top S/D junction down the side of the pillar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.