Abstract
Efficient, nanoscale precision alignment of defect center creation in photonics structures in challenges the realization of high-performance photonic devices and quantum technology applications. Here, we propose a facile self-aligned patterning technique based on conventional engineering technology, with doping precision that can reach ~15 nm. We demonstrate this technique by fabricating diamond nanopillar sensor arrays with high consistency and near-optimal photon counts. The sensor array achieves high yield approaching the theoretical limit, and high efficiency for filtering sensors with different numbers of nitrogen vacancy centers. Combined with appropriate crystal orientation, the system achieves a saturated fluorescence rate of 4.34 Mcps and effective fluorescence-dependent detection sensitivity of 1800 cps−1/2 . These sensors also show enhanced spin properties in the isotope-enriched diamond. Our technique is applicable to all similar solid-state systems and could facilitate the development of parallel quantum sensing and scalable information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.