Abstract
The top–down fabrication of high aspect ratio circular micro- and nanostructures in silicon nitride is presented. A new method is introduced to increase the aspect ratio of anisotropically etched holes by a factor of more than two with respect to the results obtained from an established dry-etching process. The method is based on the renewal of an etching mask after a first etching step has been completed. Mask renewal is done by line-of-sight deposition of a masking layer on the surface of the sample, which is mounted at an angle with respect to the deposition direction. No additional alignment step is required. The proof of principle is performed for silicon nitride etching through a mask of titanium, but the method has great potential to be applicable to a wide variety of substrate–mask combinations and to find entrance into various engineering fields. Two specific applications are highlighted. Firstly, a thick silicon nitride hardmask is used for the fabrication of deeply etched photonic crystal holes in indium phosphide (InP). For holes of 280 nm diameter, a record aspect ratio of 20 and an overall selectivity of 28.5 between a positive-tone resist layer and InP are reported. Secondly, the use of perforated silicon nitride membranes for droplet formation for applications in food engineering or pharmaceutics is addressed. Preliminary results show a potential for the self-aligned mask renewal method to exceed state-of-the-art membrane quality in terms of pore size, aspect ratio and membrane stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.