Abstract

It is shown that the multiplicative monoids of Temperley–Lieb algebras are isomorphic to monoids of endomorphisms in categories where an endofunctor is adjoint to itself. Such a self-adjunction is found in a category whose arrows are matrices, and the functor adjoint to itself is based on the Kronecker product of matrices. This self-adjunction underlies the orthogonal group case of Brauer's representation of the Brauer centralizer algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.