Abstract

We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the Kreĭn-Višik-Birman extension scheme, or also on Grubb’s universal classification theory, as opposite to previous works within the standard von Neumann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the extension, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.