Abstract
In this paper we study self-adjoint commuting ordinary differential operators of rank two. We find sufficient conditions when an operator of fourth order commuting with an operator of order 4g+2 is self-adjoint. We introduce an equation on potentials V(x),W(x) of the self-adjoint operator \(L=(\partial_{x}^{2}+V)^{2}+W\) and some additional data. With the help of this equation we find the first example of commuting differential operators of rank two corresponding to a spectral curve of higher genus. These operators have polynomial coefficients and define commutative subalgebras of the first Weyl algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.