Abstract
Sweat is a noninvasive metabolite that can provide clinically meaningful information about physical conditions without harming the body. Glucose, a vital component in sweat, is closely related to blood glucose levels, and changes in its concentration can reflect the health status of diabetics. We introduce a self-adhesive, wearable microfluidic chip with erasable liquid metal plasmonic hotspots for the precise detection of glucose concentration in sweat. The self-adhesive, wearable microfluidic chip is made from modified polydimethylsiloxane (PDMS) with enhanced stickiness, enabling conformal contact with the skin, and can collect, deliver, and store sweat. The plasmonic hotspots are located inside the microfluidic channel, are generated by synthesizing silver nanostructures on liquid metal, and can be removed in the alkaline solution. It indicates the erasable and reproducible nature of the plasmonic hotspots. The detection method is based on surface-enhanced Raman spectroscopy (SERS), which allows for accurate detection of the glucose concentration. To enhance the sensitive detection of glucose, the SERS substrate is modified by 4-mercaptophenylboronic acid to achieve the limit of detection of 1 ng/L glucose, which is much lower than the physiological conditions (7.2-25.2 μg/L). The developed microfluidic chip is soft, stretchable, and nontoxic, bringing new possibilities to wearable sweat-sensing devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.