Abstract
In this paper, we introduce two subgradient extragradient-type algorithms for solving variational inequality problems in the real Hilbert space. The first one can be applied when the mapping f is strongly pseudomonotone (not monotone) and Lipschitz continuous. The first algorithm only needs two projections, where the first projection onto closed convex set C and the second projection onto a half-space C_{k}. The strong convergence theorem is also established. The second algorithm is relaxed and self-adaptive; that is, at each iteration, calculating two projections onto some half-spaces and the step size can be selected in some adaptive ways. Under the assumption that f is monotone and Lipschitz continuous, a weak convergence theorem is provided. Finally, we provide numerical experiments to show the efficiency and advantage of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.