Abstract

This article introduces a new kind of self-adaptation in discovery mechanism of learning classifier system XCS. Unlike the previous approaches, which incorporate self-adaptive parameters in the representation of an individual, proposed model evolves competitive population of the reduced XCSs, which are able to adapt both classifiers and genetic parameters. The experimental comparisons of self-adaptive mutation rate XCS and standard XCS interacting with 11-bit, 20-bit, and 37-bit multiplexer environment were provided. It has been shown that adapting the mutation rate can give an equivalent or better performance to known good fixed parameter settings, especially for computationally complex tasks. Moreover, the self-adaptive XCS is able to solve the problem of inappropriate for a standard XCS parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.