Abstract
In this paper, two new algorithms are introduced for solving a pseudomontone variational inequality problem with a Lipschitz condition in a Hilbert space. The algorithms are constructed around three methods: the subgradient extragradient method, the inertial method and the viscosity method. With a new stepsize rule is incorporated, the algorithms work without any information of Lipschitz constant of operator. The weak convergence of the first algorithm is established, while the second one is strongly convergent which comes from the viscosity method. In order to show the computational effectiveness of our algorithms, some numerical results are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.