Abstract
In this article, a self-adaptive global mine blast algorithm (GMBA) is proposed for numerical optimization. This algorithm is designed in a novel way, and a new shrapnel equation is proposed for the exploitation phase of mine blast algorithm. A theoretical study is performed, which proves the convergence of any typical shrapnel piece; a new definition for parameters values is defined based on the performed theoretical studies. The promising nature of newly designed exploitation idea is verified with the help of multiple numerical experiments. A state-of-the-art set of benchmark problems are solved with the proposed GMBA, and the optimization results are compared with seven state-of-the-art optimization algorithms. The experimental results are statistically validated by using Wilcoxon signed-rank test, and time complexity of GMBA is also calculated. It has been justified that the proposed GMBA works as a global optimizer for constrained optimization problems. As an application to the newly developed GMBA, an important data clustering problem is solved on six data clusters and the clustering results are compared with the state-of-the-art optimization algorithms. The promising results claim the proposed GMBA as a strong optimizer for data clustering application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.