Abstract

Despite the recent improvement of object detection techniques, many of them fail to detect objects in low-luminance images. The blurry and dimmed nature of low-luminance images results in the extraction of vague features and failure to detect objects. In addition, many existing object detection methods are based on models trained on both sufficient- and low-luminance images, which also negatively affect the feature extraction process and detection results. In this article, we propose a framework called Self-adaptive Feature Transformation Network (SFT-Net) to effectively detect objects in low-luminance conditions. The proposed SFT-Net consists of the following three modules: (1) feature transformation module, (2) self-adaptive module, and (3) object detection module. The purpose of the feature transformation module is to enhance the extracted feature through unsupervisely learning a feature domain projection procedure. The self-adaptive module is utilized as a probabilistic module producing appropriate features either from the transformed or the original features to further boost the performance and generalization ability of the proposed framework. Finally, the object detection module is designed to accurately detect objects in both low- and sufficient- luminance images by using the appropriate features produced by the self-adaptive module. The experimental results demonstrate that the proposed SFT-Net framework significantly outperforms the state-of-the-art object detection techniques, achieving an average precision (AP) of up to 6.35 and 11.89 higher on the sufficient- and low- luminance domain, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.