Abstract

In this paper, we propose an improved learning algorithm named self-adaptive evolutionary extreme learning machine (SaE-ELM) for single hidden layer feedforward networks (SLFNs). In SaE-ELM, the network hidden node parameters are optimized by the self-adaptive differential evolution algorithm, whose trial vector generation strategies and their associated control parameters are self-adapted in a strategy pool by learning from their previous experiences in generating promising solutions, and the network output weights are calculated using the Moore–Penrose generalized inverse. SaE-ELM outperforms the evolutionary extreme learning machine (E-ELM) and the different evolutionary Levenberg–Marquardt method in general as it could self-adaptively determine the suitable control parameters and generation strategies involved in DE. Simulations have shown that SaE-ELM not only performs better than E-ELM with several manually choosing generation strategies and control parameters but also obtains better generalization performances than several related methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.