Abstract

Massive volume change of active materials in lithium/sodium ion batteries (LIB/SIB) causes severe structural collapse of electrodes and fast capacity decay of batteries. Here, a coaxial composite of single-wall carbon nanotube bundle (SWCNTB/SnO2 ) nanoparticles (NPs)/N-doped carbon shell (SWCNTB@SnO2 @C) is constructed, where SWCNTBs with exceptional elasticity are explored as a self-adaptive substrate to supply a highly resilient conductive network. Within the confinement of hard carbon shells, SWCNTB can produce radially elastic deformation to accommodate the volume change of SnO2 during Li+ /Na+ insertion/extraction. This overcomes the problem of strain fracturing of the outer carbon shell, as well as maintains close electrical contact between SnO2 and the conductive network. The LIB/SIB with the self-adaptive SWCNTB@SnO2 @C electrode presents a series of superior battery performances, for example, a high specific capacity of 608 mAh g-1 at 10 A g-1 and 600 cycles in LIB without capacity decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.