Abstract
Conformational dynamics of active sites in enzymes enable great control over the catalytic process. Herein, we constructed a metal-organic framework with conformationally dynamic active sites (Rh2-ZIF-8). The active sites in Rh2-ZIF-8 were composed of the imidazolate-bridged bimetallic center with a catalytic dirhodium moiety and structural zinc site. Even though the coordination sphere of the dirhodium species was saturated with two circularly arranged esp groups and two axial 2-MeIm ligands, it could still effectively catalyze the direct synthesis of N-H aziridines from olefins with high activity. We found that such a self-adaptive catalytic process was based on the dynamic breakage and reformation of the rhodium-zinc imidazolate bridges. Interestingly, the in situ generated dirhodium site with a unique Rh2(esp)2(2-MeIm)1 configuration was able to exhibit obviously enhanced selectivity compared to homogeneous catalyst Rh2(esp)2. Furthermore, the surrounding zinc imidazolate groups could effectively protect the dirhodium moieties from harsh environments, and this ultimately endowed it with high stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.