Abstract
Real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. To solve such constrained multi-objective problems effectively, in this paper, we put forward a new approach which integrates self-adaptive differential evolution algorithm with α-constrained-domination principle, named SADE-αCD. In SADE-αCD, the trial vector generation strategies and the DE parameters are gradually self-adjusted adaptively based on the knowledge learnt from the previous searches in generating improved solutions. Furthermore, by incorporating domination principle into α-constrained method, α-constrained-domination principle is proposed to handle constraints in multi-objective problems. The advantageous performance of SADE-αCD is validated by comparisons with non-dominated sorting genetic algorithm-II, a representative of state-of-the-art in multi-objective evolutionary algorithms, and constrained multi-objective differential evolution, over fourteen test problems and four well-known constrained multi-objective engineering design problems. The performance indicators show that SADE-αCD is an effective approach to solving constrained multi-objective problems, which is basically enabled by the integration of self-adaptive strategies and α-constrained-domination principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.