Abstract
Many real-world optimization problems are large-scale in nature. In order to solve these problems, an optimization algorithm is required that is able to apply a global search regardless of the problems’ particularities. This paper proposes a self-adaptive differential evolution algorithm, called jDElscop, for solving large-scale optimization problems with continuous variables. The proposed algorithm employs three strategies and a population size reduction mechanism. The performance of the jDElscop algorithm is evaluated on a set of benchmark problems provided for the Special Issue on the Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems. Non-parametric statistical procedures were performed for multiple comparisons between the proposed algorithm and three well-known algorithms from literature. The results show that the jDElscop algorithm can deal with large-scale continuous optimization effectively. It also behaves significantly better than other three algorithms used in the comparison, in most cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.