Abstract
Due to the diversity of traffic scenes and high mobility of vehicles, the propagation environment between moving vehicles and road side access points can be highly dynamic, which causes unstable uplink connectivity and time-varying uplink data rates in vehicular networks. In this paper, we study the uplink performance of heterogenous vehicular networks, which integrate dedicated short-range communications (DSRCs) and Long Term Evolution vehicle-to-everything (LTE V2X) into a single vehicular network to provide high reliability, low latency, and wide area coverage. Here, we adopt a cluster-based approach, in which DSRC and LTE are utilized to provide vehicle-to-vehicle communications between vehicles within a cluster and vehicle-to-infrastructure communications between vehicles and access points, respectively. Specifically, a self-adaptive clustering method is proposed based on the iterative self-organizing data analysis technique algorithm, in which the number of clusters can automatically adjust to the optimal value according to the mobility information. Also, a joint load-bandwidth management scheme is proposed to distribute traffic load and bandwidth resources between DSRC and LTE. Simulation results show that the proposed algorithm outperforms the traditional section-based and ${K}$ -means clustering methods, and a tradeoff between average uplink data rate and signaling overhead can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.