Abstract
Purpose – This research aims to propose self-adaptive ant colony optimization (SACO) with changing parameters for solving time-cost optimization (TCO) problems to assist the relevant construction management firm with their technological tool. Design/methodology/approach – A SACO with changing parameters based on information entropy has been employed to model TCO problem, which overcomes the intrinsic weakness of premature convergence of the basic ant colony optimization by adjusting parameters according to mean information entropy of the ant system. A computer simulation with Matlab 7.0 based on a prototype example has been carried out on the basis of SACO for TCO problem. Findings – The test results show that the SACO for TCO model can generate a better cost under the same duration and achieve a better Pareto front than other models. Therefore, the SACO can be regarded as a useful approach for solving construction project TCO problems. Research limitations/implications – Further research on selection parameters should be conducted to further improve the robustness of the SACO for TCO model. Practical implications – The modelling results can help the construction management to good result of TCO problems in construction sites. Originality/value – A new approach to study the TCO model is proposed based on SACO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.