Abstract
We propose a self-adaptive absorbing technique for quasilinear ultrasound waves in two- and three-dimensional computational domains. As a model for the nonlinear ultrasound propagation in thermoviscous fluids, we employ Westervelt's wave equation solved for the acoustic velocity potential. The angle of incidence of the wave is computed based on the information provided by the wave-field gradient which is readily available in the finite element framework. The absorbing boundary conditions are then updated with the angle values in real time. Numerical experiments illustrate the accuracy and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.