Abstract

Smart materials that can respond to multistimuli have been broadly studied. However, the smart materials that can spontaneously answer the ever-changing inner environment of living bodies have not been reported. Here, we report a strategy based on the dynamic chemistry to develop possible self-adapting solid materials that can automatically change shape without external stimuli, as organisms do. The self-adapting property of a chitosan-based self-healing hydrogel has been rediscovered since its dynamic Schiff-base network confers the unique mobility to that solid gel. As a result, the hydrogel can move slowly, like an octopus climbing through a narrow channel, only following the natural forces of surface tension and gravity. The fascinating self-adapting feature enables this hydrogel as an excellent drug carrier for the in vivo wound treatment. In a healing process of the rat-liver laceration, this self-adapting hydrogel demonstrated remarkable superiority over traditional drug delivery methods, suggesting the great potential of this self-adapting hydrogel as a promising new material for biomedical applications. We believe the current research revealed a possible strategy to achieve self-adapting materials and may pave the way toward the further development, study, and application of new-generation smart materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.