Abstract

Efficient, robust and environmentally friendly cocatalysts for photocatalysts are important for large-scale solar hydrogen production. Herein, we demonstrate that a Rh–Zr mixed oxide is an efficient cocatalyst for hydrogen evolution. Impregnation of Zr and Rh precursors (Zr/Rh = 5 wt/wt%) formed RhZrOx cocatalyst particles on Al-doped SrTiO3, which exhibited 31× higher photocatalytic water-splitting activity than a RhOx cocatalyst. X-ray photoelectron spectroscopy proved that the dissociation of Cl− ions from preformed Rh–Cl–Zr–O solid led to formation of the active phase of RhZrOx, in which the Zr/Rh ratio was critical to high catalytic activity. Additional CoOx loading as an oxygen evolution cocatalyst further improved the activity by 120%, resulting in an apparent quantum yield of 33 (±4)% at 365 nm and a long durability of 60 h. Our discovery could help scale up photocatalytic hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call