Abstract

We briefly review the effects of nonlinear self-action of beams of strongly distorted waves containing steep shock fronts. The features of inertial self-actions of periodic sawtooth waves in quadratic nonlinear media without dispersion are discussed. These phenomena can be caused by an acoustic wind or thermal lens formed as a result of the nonlinear dissipation at the shock fronts. Instantaneous self-actions are analyzed on the examples of periodic trapezoidal waves, which are formed in cubic nonlinear media and contain alternating compression and rarefaction shocks, and a single-pulse signal containing a shock front. Mathematical models and solutions to the corresponding nonlinear equations are given. A qualitative comparison with optical self-action phenomena and with available experimental data is performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call