Abstract

Extension flow induced crystallization of isotatic polypropylene (iPP) has been studied with a combination of extension rheological and in situ small-angle X-ray scattering (SAXS) measurements at 140 °C. Rheological data of step extension on iPP melt are divided into before and beyond fracture strain zones in strain–strain rate space, where intermediate strains between them lead to fracture of samples. Coincidently, weak and strong accelerations of nucleation are observed in the before and beyond fracture strain zones respectively, where distinctly different features of crystallization kinetics and nucleation form occur in these two zones. The microrheological model explains the acceleration of nucleation in the “before fracture strain zone” well, while a “ghost nucleation” mechanism is proposed to interpret the strong acceleration of nucleation in the “beyond fracture strain zone”. The “ghost nucleation” is due to the displacement of initial parent point nuclei, where daughter nuclei are induced along the trails. This new mechanism explains well the acceleration of nucleation in orders of magnitude and the formation of shish in iPP melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.