Abstract

Flame acceleration associated with development of the Landau–Darrieus hydrodynamic instability is studied by means of direct numerical simulation of the Navier–Stokes equations including chemical kinetics in the form of the Arrhenius law. The fractal excess for radially expanding flames in cylindrical geometry is evaluated. Two-dimensional (2-D) simulation of radially expanding flames in cylindrical geometry displays a radial growth with 1.25 power law temporal behavior after some transient time. It is shown that the fractal excess for 2-D geometry obtained in the numerical simulation is in good agreement with theoretical predictions. The difference in fractal dimension between 2-D cylidrical and three-dimensional spherical radially expanding flames is outlined. Extrapolation of the obtained results for the case of spherical expanding flames gives a radial growth power law that is consistent with temporal behavior obtained in the survey of experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.