Abstract

Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not intersect all characteristics in the past light cone of a given observer. The global structure of spacetime also reveals issues that are unique to theories with two metrics: in all three classes of solutions, the Minkowski fiducial space fails to cover the entire de Sitter spacetime allowing worldlines of observers to end in finite proper time at determinant singularities. Characteristics run tangent to these surfaces requiring {\it ad hoc} rules to establish continuity across singularities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call