Abstract

The elimination of gaseous sulfur-containing volatile organic compounds (S-VOCs) by a microbubble-assisted Fenton-like process is an innovative strategy. Herein, we established a microbubble-assisted Fenton-like process to eliminate malodorous microbubble CH3SH as representative gaseous S-VOCs, in which BiOCl nanosheets loaded on a three-dimensional sponge were exposed to (001) or (010) facets and induced Fenton-like interface reactions. Intriguingly, the microbubble-assisted Fenton-like process significantly removed 99.9% of CH3SH, higher than that of the macrobubble-assisted Fenton-like process (39.0%). The self-accelerating interfacial catalytic mechanism was in-depth identified by in situ ATR-FTIR, PTR-TOF-MS, EPR, and DFT computational study. The extraordinary elimination performance of microbubble-assisted Fenton-like process lies in the enhancing dissolution/mass transfer of gaseous CH3SH in the gas/liquid phase and the tight contact between CH3SH-microbubbles and 3D-BiOCl sponge due to the low rising velocity (0.13 mm s-1) and negative charge (-45.53 mV) of CH3SH-microbubbles, as well as the effective generation of 1O2 by activating the enriched dissolved oxygen in CH3SH-microbubble via effective electron-polarized sites on 3D-BiOCl sponge. Furthermore, CH3SH-microbubbles transferred electrons to H2O2 through electron-rich oxygen vacancy centers of the 3D-BiOCl sponge to generate more •OH, thus achieving excellent elimination performance. Overall, this study demonstrates the enhanced self-accelerating interfacial catalytic elimination by S-VOC microbubble and provides the underlying mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.