Abstract

X-ray fluorescence mapping (XRF) is a highly efficient and non-invasive technique for quantifying material composition with micro and nanoscale spatial resolutions. Quantitative XRF analysis, however, confronts challenges from the long-lasting problem called self-absorption. Moreover, correcting two-dimensional XRF mapping datasets is particularly difficult because it is an ill-posed inverse problem. Here we report a semi-empirical method that can effectively correct 2D XRF mapping data. The correction error is generally less than 10% from a comprehensive evaluation of the accuracy in various configurations. The proposed method was applied to quantify the composition distribution around the grain boundaries in an electrochemically corroded stainless steel sample. Highly localized Cr enrichment was found around the crack sites, which was invisible before the absorption correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call