Abstract

In retrospect, the history of selenium biochemistry does not differ greatly from the study of a number of other trace elements in that it occurred over many years, progressing from periods of little general interest to widespread concern regarding toxicity problems and eventually to recognition of selenium as an essential nutrient for many forms of life. My involvement in studies on selenium metabolism is a classic example of serendipity. I was studying an interesting enzyme from an anaerobic bacterium that utilized glycine as substrate (glycine reductase), but the amounts of pure protein I could isolate were very limited because it seemed to be produced only during the very early stages of bacterial cell growth. The rich culture medium supported continued luxuriant growth of the bacterium, but the level of the desired enzyme in the cells merely underwent dilution during the process. Finally, after testing many known growth stimulatory supplements to no avail, my colleagues and I tried two inorganic nutrients, molybdate and selenite. This approach was prompted by the report that addition of these inorganic compounds to a medium used for anaerobic growth of Escherichia coli supported synthesis of the enzyme formate dehydrogenase [1]. Much to my delight, addition of selenite to our growth medium resulted in greatly increased levels of the glycine reductase enzyme, and synthesis of the protein continued throughout the entire growth period. Thus, a common belief among microbiologists that a so-called rich culture medium high in tryptone and yeast extract content was nutritionally adequate is incorrect if growth of the organism depends on ability to synthesize a selenium-containing enzyme. In our case other amino acids in the medium could support growth even when the trace of selenium was depleted and synthesis of glycine reductase stopped. With this unexpected finding, we had an ideal biological system for unraveling details of the role of selenium in the anaerobic metabolism of glycine.

Highlights

  • The element selenium was discovered by the Swedish chemist Berzelius in 1817, and the few organic selenium-containing compounds that were prepared during the subsequent 100 years were considered primarily as chemical curiosities

  • From 1930 to the mid-1950s, many investigators attempted to determine the chemical form(s) of the selenium present in the toxic plants, and animal nutritionists tested the effects of various inorganic and a few organic selenium compounds administered to animals

  • It took many years for scientists to learn how to identify and determine quantitatively the organic selenium compounds normally present in biological materials, and prior to the mid-1950s, these compounds, especially in selenium accumulator plants, were known only for their acute toxic effects

Read more

Summary

Introduction

The element selenium was discovered by the Swedish chemist Berzelius in 1817, and the few organic selenium-containing compounds that were prepared during the subsequent 100 years were considered primarily as chemical curiosities. It took many years for scientists to learn how to identify and determine quantitatively the organic selenium compounds normally present in biological materials, and prior to the mid-1950s, these compounds, especially in selenium accumulator plants, were known only for their acute toxic effects.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.