Abstract

The quality of skeletal muscle is maintained by a balance between protein biosynthesis and degradation. Disruption in this balance results in sarcopenia. However, its underlying mechanisms remain under-investigated. Selenoprotein P (SeP; encoded by Selenop in mice) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. We created immobilized muscle atrophy (IMM) model in Selenop knockout (KO) mice. IMM significantly reduced cross-sectional areas and the size of skeletal muscle fibers, which were ameliorated in KO mice. IMM upregulated the genes encoding E3 ubiquitin ligases and their upstream FoxO1, FoxO3, and KLF15 transcription factors in the skeletal muscle, which were suppressed in KO mice. These findings suggest a possible involvement of SeP-mediated reductive stress in physical inactivity-mediated sarcopenia, which may be a therapeutic target against sarcopenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.