Abstract

Selenophosphate synthetase (SelD) generates the selenium donor for selenocysteine biosynthesis in eubacteria. One homologue of SelD in eukaryotes is SPS1 (selenophosphate synthetase 1) and a second one, SPS2, was identified as a selenoprotein in mammals. Earlier in vitro studies showed SPS2, but not SPS1, synthesized selenophosphate from selenide, whereas SPS1 may utilize a different substrate. The roles of these enzymes in selenoprotein synthesis in vivo remain unknown. To address their function in vivo, we knocked down SPS2 in NIH3T3 cells using small interfering RNA and found that selenoprotein biosynthesis was severely impaired, whereas knockdown of SPS1 had no effect. Transfection of SPS2 into SPS2 knockdown cells restored selenoprotein biosynthesis, but SPS1 did not, indicating that SPS1 cannot complement SPS2 function. These in vivo studies indicate that SPS2 is essential for generating the selenium donor for selenocysteine biosynthesis in mammals, whereas SPS1 probably has a more specialized, non-essential role in selenoprotein metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.