Abstract

Selenium is an essential trace element in vertebrates, but there is a narrow concentration range between dietary requirement and toxicity threshold. Although a great deal is known about the biochemistry of Se from a nutritional perspective, considerably less attention has been focused on the specific biochemistry of Se as an environmental toxicant. Recent advances in hyphenated analytical techniques have provided the capability of quantifying specific chemical forms of Se in biological tissues as well as the distribution of Se among macromolecules. We applied liquid chromatography coupled to inductively coupled plasma mass spectrometryto investigate biotransformations of selenomethionine along a simulated terrestrial food chain consisting of selenomethionine exposed crickets (Acheta domesticus) fed to western fence lizards (Sceloporus occidentalis). Evidence was obtained for selenomethionine biotransformation as well as for sex-specific differences in the metabolism of Se compounds and their subsequent incorporation into proteins in the lizard. The results demonstrate the complexities involved in trophic transfer of Se due to the potential for extensive biotransformation and the species- and even sex-specific nature of these biotransformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.