Abstract

Previous studies with selenium and/or vitamin E in prostate carcinogenesis animal models have been negative, but these models may not involve oxidative stress mechanisms. In this study, we examined the potential of selenomethionine and alpha-tocopherol to modulate prostate cancer development in the testosterone plus estradiol-treated NBL rat, a model that does involve sex hormone-induced oxidative stress mechanisms and prostatic inflammation. One week following the implantation with hormone-filled Silastic implants, rats were fed diets containing l-selenomethionine (1.5 or 3.0 mg/kg), DL-alpha-tocopherol acetate (2,000 or 4,000 mg/kg), or a natural ingredient control diet (NIH-07). The development of prostate carcinomas was not affected by dietary treatment with either agent. Food intake, body weight, and mortality were also not affected. The high dose of selenomethionine reduced the severity of epithelial dysplasia in the lateral prostate that was not associated with inflammation, and alpha-tocopherol reduced in a dose-related fashion the incidence of marked inflammation and marked epithelial dysplasia in the lateral prostate, regardless of whether these lesions were associated with inflammation. alpha-Tocopherol significantly increased the incidence of adenocarcinomas of the mammary glands at both dietary concentrations. Collectively, our findings suggest that selenomethionine and alpha-tocopherol supplementation does not prevent prostate cancer in rats fed diets with nutritionally adequate levels of selenium and vitamin E. Importantly, the results of the current animal studies and those reported previously were fully predictive of the outcome of the Selenium and Vitamin E Cancer Prevention Trial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call