Abstract

The fabrication of discrete nanostructures with both plasmonic circular dichroism (PCD) and chiral features is still a challenge. Here, gold nanoarrows (GNAs) with both chiroptical responses and chiral morphologies are achieved by using L-selenocystine (L-SeCys2 ) as a chiral inducer. While L-SeCys2 generates GNAs with a weak PCD signal, the irradiated L-SeCys2 (irr-L-SeCys2 ) leads to GNAs with featured helical grooves (HeliGNAs) accompanying with a strong PCD signal. It is revealed that when L-SeCys2 is photo-irradiated, the emergence of selenyl radicals plays an important role in the formation of HeliGNAs and enhancement of the chiroptical signal. In comparison with L-SeCys2 and the other kinds of sulfur-containing amino acids, the formation mechanism of helical grooves on the surface of GNAs is proposed. Both HeliGNAs and GNAs are used to discriminate amino acids by utilizing surface enhanced Raman scattering (SERS) effect. In the presence of either GNAs or HeliGNAs as the substrate, Fmoc-L-Phe shows more significant SERS than Fmoc-D-Phe. This study may advance the design of discrete plasmonic nanomaterials with both chiral morphology and potential applications in discrimination of chiral molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.