Abstract

Copper–Indium (Cu–In) alloys with sulfur and selenium have technological importance in the development of thin film solar cell technology. We have used potentiostatic electrochemical technique with three-electrode geometry for the deposition of Cu–In alloy thin films in an aqueous electrolyte. Cathodic voltammetry (CV) was thoroughly studied to optimize the electrodeposition parameters. The deposition potential for Cu–In alloy was found to be in the range −0.70 to −0.85 V versus Ag/AgCl reference electrode. Polycrystalline CuxIny thin films were electrodeposited from aqueous bath at room temperature and 45 °C. Effect of concentration of citric acid was extensively studied by CV measurements. The as-deposited Cu–In films were characterized with a range of characterization techniques to study the structural, morphological, compositional and electrical properties. Thin layers of Cu–In were selenized in a homemade tubular furnace at 400 °C, which reveals the formation of polycrystalline CuInSe2 (CISe) thin films with tetragonal structure. The band gap of CISe thin film was estimated ~1.05 eV by optical absorption spectroscopy. Nearly stoichiometric CISe thin film, Cu = 25.25 %, In = 26.48 % and Se = 48.27 % was obtained after selenization. The linear behavior of current density–voltage (J–V) was observed for Cu–In alloy thin films whereas, the selenized Cu–In alloy films (CISe) possess rectifying properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.