Abstract

Concave nanocrystals stand out as a testament to the importance of the nanoscale morphology in dictating the functional properties of materials. In this report, we introduce a facile synthesis method for producing gold (Au) nanocrystals with a truncated octahedral morphology that features surface concavities (Au CNTOs). The incorporation of selenium (Se) doping into the truncated octahedral Au seeds was essential for their enlargement and the formation of concave structures. By simply adjusting the quantity of seeds, we could control the size of the nanocrystals while maintaining their distinctive morphology and surface concavity. The formation mechanism suggests that Se doping likely passivates the side faces, thereby slowing growth and promoting atomic deposition at the edges and corners. The resulting Se-doped Au CNTOs exhibited strong localized surface plasmon resonance (LSPR) absorptions in the visible spectrum and the SERS performance of their assemblies was demonstrated through crystal violet detection, reaching enhancement factors around 105. This study presents an innovative approach to synthesizing concave Au nanocrystals through the incorporation of selenium during a seeded growth process, offering insights into the strategic design of plasmonic nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.