Abstract

A flow-through experimental wetland system has been under investigation since 1996 to remove selenium (Se) fromagricultural drainage water in the Tulare Lake Drainage Districtat Corcoran, California, U.S.A. The system consists of ten cellswhich have dimensions of 15 × 76 m continuously flooded andvarious substrates planted. The objectives of this article are topresent the overall performance in Se removal after establishingthe wetland for three years, and to examine factors affecting Seremoval with special attention to accumulation in the sediments.In 1999, The wetland cells reduced Se from inflow water by 32 to65% in concentration and 43 to 89% in mass. Vegetationplays an important role in Se removal as non-vegetated cellshowed the least removal of Se. The inflow drainage water wasdominated by selenate (Se(VI), 91%) with smaller percentages ofselenite (Se(IV), 7%) and organic Se (org-Se(II-), 2%). Theoutflow water from the cells contained an average of 47% Se(VI),32% Se(IV) and 21% org-Se indicating reduction processesoccurring in the wetland cells. The surface sediment appears as alarge sink of Se removal. The highest Se concentration was foundin fallen litter, followed by the fine organic detrital layer onthe sediment surface. The sediment Se concentration dramaticallydecreased with increasing sediment depth. The mass distribution of Se, however, was sediment (0-20 cm) > fine detrital matter >fallen litter. Fractionation of surface sediment (0-5 cm) reveals that elemental Se was the largest fraction (ave. 47%) followedby organic matter-associated Se (34%). Soluble, adsorbed, and carbonate-associated Se accounted for 1.2, 3.1 and 2.5% ofthe total sediment Se, respectively. The major Se sink mechanism in the cells is the reduction of selenate to elemental Se andimmobilization into the organic phase of the sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call