Abstract

Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 μg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call