Abstract

Oxidative stress plays a crucial role in steroid-induced osteonecrosis of the femoral head (SONFH). Although several antioxidant strategies have been investigated for treating SONFH, their antioxidant efficiencies and therapeutic effects remain unsatisfactory. Here, we developed a selenium nanoparticles/carboxymethyl chitosan/alginate (SeNPs/CMC/Alg) antioxidant hydrogel and evaluated its ability to treat SONFH. In vitro assays indicated that the SeNPs/CMC/Alg hydrogel exhibited excellent properties, such as low cytotoxicity, sustained SeNPs release, and favorable antioxidant activity. Under oxidative stress, the SeNPs/CMC/Alg hydrogel promoted reactive oxygen species (ROS) elimination and enhanced the osteogenic and proangiogenic abilities of bone marrow mesenchymal stem cells (BMSCs). After establishing a rabbit model of SONFH, the SeNPs/CMC/Alg hydrogel was transplanted into the femoral head after core decompression (CD) surgery. Radiographic and histological analyses revealed that the hydrogel treatment alleviated SONFH by eliminating ROS and promoting osteogenesis and angiogenesis compared to those in the CD and CMC/Alg groups. In vitro and in vivo studies indicated that the Wnt/β-catenin signaling pathway was activated by the SeNPs/CMC/Alg hydrogel in both hydrogen peroxide-conditioned BMSCs and necrotic femoral heads. These findings indicate that local transplantation of the SeNPs/CMC/Alg hydrogel is beneficial for treating SONFH, as it promotes ROS elimination and activation of the Wnt/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call