Abstract

Glucosinolates are sulfur-containing secondary plant metabolites commonly found in the family Brassicaceae. The presence of selenium in soils increases the uptake of sulfur and inhibits the production of glucosinolates in brassicaceous plants. This study was undertaken to determine the extent of selenium's impact on sulfur uptake and glucosinolate production in Brassica oleracea L. Rapid-cycling B. oleracea plants were grown hydroponically in half-strength Hoagland's nutrient solution with selenium treatments delivered as sodium selenate concentrations of 0.0, 0.5, 0.75, 1.0, and 1.5 mg·L−1. Elevated sulfur treatments of 37 mg·L−1 sulfate and 37 mg·L−1 sulfate/0.75 mg·L−1 selenate were incorporated to compare with selenium treatments. Plants were harvested and freeze-dried 1 day before anthesis. Selenium and sulfur content of plant tissue was determined by flame atomic absorption spectrophotometry and a carbon–nitrogen–sulfur analyzer. Glucosinolate content of leaf tissue was determined by high-performance liquid chromatography. Selenium and sulfur uptake in plants positively correlated with selenium concentration in the nutrient solution. The sulfur concentration of plants exposed to selenium equaled or exceeded the sulfur concentration of plants exposed to elevated sulfur. Despite higher sulfur concentrations, there occurred a statistically significant decrease in production of five of the seven glucosinolates analyzed in selenium-enriched plants. Plants that underwent elevated sulfur treatments had higher glucosinolate production than selenium-treated plants. These results suggest that selenium either upregulates or prevents the downregulation of sulfur uptake in B. oleracea. In addition, the presence of selenium within the plant appears to have a negative impact on the production of certain glucosinolates despite adequate availability of sulfur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.