Abstract
Selenium (Se), apart from iodine, iron, and calcium, is one of the nutrient-derived key elements strongly affecting the endocrine system. However, no specific hormonal "feedback" regulation for Se status has yet been identified, in contrast to the fine-tuned hormone network regulating Ca2+ and phosphate balance or hepcidin-related iron status. Since its discovery as an essential trace element, the effects of Se excess or deficiency on the endocrine system or components of the hypothalamic-pituitary-periphery feedback circuits, the thyroid hormone axis, glucoregulatory and adrenal hormones, male and female gonads, the musculoskeletal apparatus, and skin have been identified. Analysis of the Se status in the blood or via validated biomarkers such as the hepatically derived selenoprotein P provides valuable diagnostic insight and a rational basis for decision making on required therapeutic or preventive supplementation of risk groups or patients. Endocrine-related epidemiological and interventional evidence linking Se status to beneficial or potentially adverse actions of selected selenoproteins mediating most of the (patho-) physiological effects are discussed in this mini-review. Autoimmune thyroid disease, diabetes and obesity, male fertility, as well as osteoporosis are examples for which observational or interventional studies have indicated Se effects. The currently prevailing concept relating Se and selenoproteins to "oxidative stress," reactive oxygen species, radical hypotheses, and related strategies of pharmacological approaches based on various selenium compounds will not be the focus. The crucial biological function of several selenoproteins in cellular redox-regulation and specific enzyme reactions in endocrine pathways will be addressed and put in clinical perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.