Abstract

The mechanism of hydride atomization and the fate of free atoms was investigated in the miniature diffusion flame. Selenium hydride was used as a model for the other hydrides. Mercury vapor was employed as an analyte to study physical processes, such as macroscopic movements and free atom diffusion, controlling the distribution of free analyte atoms in the observation volume, separately from chemical reactions of the free atoms. Free atoms were detected by atomic absorption spectrometry. Spectroscopic temperature measurements based on atomic absorption at 196.1 and 204.0nm Se lines were used to determine the temperature distribution. The spatial temperature distribution was highly inhomogeneous ranging from 150°C to 1300°C. The whole flame volume is actually a cloud of hydrogen radicals maintaining analyte in the free atom state since hydrogen radicals formed in outer zone of the flame diffuse to its cooler inner parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call